Novel bifunctional inhibitors of xanthine oxidase and URAT1 induce profound hypouricemia in humans

Warrell RP Jr,1 Kluvkovits A,2 Barnes K,3 Satyanarayana C,3 Cheseceman C,4 Pwinski JJ,4 Relburn-Metabolomics, Inc., Westfield, NJ;1 Solvo Biotechnology, Budapest, Hungary;2 AMRI, Albany, NY;3 University of Alberta, Canada.4

Abstract

Background: We found that a prototype anticytotoxic drug (RLBN1001) induced marked hypouricemia in studies comprising > 350 human subjects. Previous anticytotoxic drugs have shown promise in reducing uric acid (UA) levels in vitro and ex vivo.

Objectives: To find that a prototype anticytotoxic drug (RLBN1001) induced marked hypouricemia in studies comprising > 350 human subjects.

Methods: We assessed RLBN1001, known human metabolites, and novel compounds developed via recursive syntheses based on iterative knowledge of structure-activity relationships (SARs). We initially assessed whether uric acid production and excretion.

Results: This drug was a potent inhibitor of URAT1 but not GLUT9a/b.

Conclusions: The prototype, RLBN1001, was a moderate inhibitor of URAT1 (~10-X more potent than lesinurad) and a (very) modest XO inhibitor. Metabolites and derivatives were developed by examining recursive SARs from in vitro assays.

Clinical Study

Serum Uric Acid (mg/dL)

<table>
<thead>
<tr>
<th>Dose</th>
<th>Initial Value</th>
<th>Lowest Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>6.2</td>
<td>1.0</td>
</tr>
<tr>
<td>200</td>
<td>5.8</td>
<td>0.8</td>
</tr>
<tr>
<td>250</td>
<td>5.3</td>
<td>1.2</td>
</tr>
<tr>
<td>400</td>
<td>4.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Low Dose (150 mg/m²) URBN1001

High Dose (250 mg/m²) URBN1001

Profund hypouricemia (< 1.0 mg/dl) is associated with increased urinary excretion of both UA and oxypurines. This drug was a potent inhibitor of URAT1 but not GLUT9a/b,

Background: We have developed a novel, potential first-line treatment for hyperuricemic patients with gout.

Methods: We iteratively synthesized a library of novel analogs and identified new series of unique compounds with strongly enhanced activities that both reduce compound are being optimized with the objective of developing a novel, UA production and enhance UA excretion. Pharmaceutical properties of a lead compound are being optimized with the objective of developing a novel, potential first-line treatment for hyperuricemic patients with gout.

Results: This drug was a potent inhibitor of URAT1 but not GLUT9a/b.

Conclusions: The prototype, RLBN1001, was a moderate inhibitor of URAT1 (~10-X more potent than lesinurad) and a (very) modest XO inhibitor. Metabolites and derivatives were developed by examining recursive SARs from in vitro assays.

Background: We found that a prototype anticytotoxic drug (RLBN1001) induced marked hypouricemia in studies comprising > 350 human subjects. Previous anticytotoxic drugs have shown promise in reducing uric acid (UA) levels in vitro and ex vivo.

Objectives: To find that a prototype anticytotoxic drug (RLBN1001) induced marked hypouricemia in studies comprising > 350 human subjects.

Methods: We assessed RLBN1001, known human metabolites, and novel compounds developed via recursive syntheses based on iterative knowledge of structure-activity relationships (SARs). We initially assessed whether uric acid production and excretion.

Results: This drug was a potent inhibitor of URAT1 but not GLUT9a/b.

Conclusions: The prototype, RLBN1001, was a moderate inhibitor of URAT1 (~10-X more potent than lesinurad) and a (very) modest XO inhibitor. Metabolites and derivatives were developed by examining recursive SARs from in vitro assays.

Background: We have developed a novel, potential first-line treatment for hyperuricemic patients with gout.

Methods: We iteratively synthesized a library of novel analogs and identified new series of unique compounds with strongly enhanced activities that both reduce compound are being optimized with the objective of developing a novel, UA production and enhance UA excretion. Pharmaceutical properties of a lead compound are being optimized with the objective of developing a novel, potential first-line treatment for hyperuricemic patients with gout.

Results: This drug was a potent inhibitor of URAT1 but not GLUT9a/b.

Conclusions: The prototype, RLBN1001, was a moderate inhibitor of URAT1 (~10-X more potent than lesinurad) and a (very) modest XO inhibitor. Metabolites and derivatives were developed by examining recursive SARs from in vitro assays.